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TECHNICAL NOTE 3870

MEASUREMENT OF THE LONGITUDINAL MOMENT OF INERTTA
OF A FLEXIBLE AIRPLANEY

By Henry A. Cole, Jr., and Frances L. Bennion

SUMMARY

The method of measuring moment of inertia of an airplane by oscil-
lating it on knife edges and a spring is examined analytically for
application to flexible alrplanes. First, the equations of motion of a -
flexible airplane mounted on three supports are presented. Then these
equations are examined for conditions required to minimize the difference
between the apparent inertia of the flexible sirplane and the inertia of
the rigid airplene. The analysis is applied to a flexible airplsne
mounted on various combinations of springs and knife edges. A practical
combination is then selected in which the moment-of-inertis correction
for flexibility is very small.

The spplication and results of the above method in ground oscillation
tests are described. The various corrections to reduce the measured
moment of inertia to the reference exis moment of inertia are presented.
The results show that measurement of moment of inertia by this method is
practicable, provided the knife edges and spring are arranged to minimize
excitation of structural modes.

INTRODUCTION

In the evalustion of stability derivatives from dynamic flight-test
data and in the prediction of the dynsmic stebility and control of an
airplane, accurate values of the moment of inertis are important. Esti-
mates of moment of inertia are usually of doubtful accuracy becsuse of
the lerge number of parts in an alrplane; hence, it is desirable when-
ever possible, to measure moments of inertia. Although moment of inertia
1s & property of rigid bodies, it is used in dynamic stability calcula-
tions for flexible airplanes because inertial effects due to flexibility
are usuelly insignificent near frequencies of the airplesne oscillatory
modes. For frequencles near the structural modes, inertial effects due
to flexibility have to be tsken into account 1n the analysis.

1supersedes recently declassified RM A55J21 by Henry A. Cole, Jr.,
and Frances L. Bennion, 1956.
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The present investigation was conducted to obtain relisble measure-
ments of longitudinel moment of inertias of a large flexlible swept-wing
airplane for use in conjunction with the dynamic stability and control
progrem which is reported in reference 1. The eirplane was oscillated
on a support of a spring and two knife edges because this appeared to be
most practical for a large airplane. This method is commonly used for
the determination of moment of inertis of rigid airplanes (ref. 2).
Design of the support equipment becomes more critical for a flexible
alrplane because dynamic coupling of airplane structural modes with the
support spring system can cause serious errors in the measured frequency
From which the moment of inertia is calculated. Furthermore, the loads
at the three supporting points may be nesr the maximum allowaeble; hence,
additional loads due to dynamic forces may overstress the airplane struc-
ture. In order to overcome these difficulties, the spring-sirplane
dynamic systems for a wide range of epring and knife-edge arrangements
were analyzed, and a combination was selected which practically eliminsted
the effects of structural flexibility.

The methods used in the dynsmical-systems studies and the results
should be of genersl interest because they mey be applied to other alr-
plenes in which flexibility is a problem. The first part of the report
presents methods which can be used to minimize the effects of flexibility.
The second part deals with ground oscilletion tests of the airplane con-
ducted by personnsl of the High-Speed Flight Station of the NACA at ¥
Edwards Air Force Base, California. B '

JNOTATION

&4 j system influence coefficient, deflection at station i, relative

to horizontal plane, due to load at station J, in./lOOO 1b . -
bij wing influence coefficient, deflection at station i, relative

to fuselage center line, due to load at station J, in./lOOO 1b

(Because of symmetry, stiffness of both wings is included.)
i,J arbitrary stetlon numbers
k epring comstant, 1000 1b/in. .
my equivalent mass at station i, slugs

(Because of symmetry, mess of both wings is included in wing

stations.)

r knife-edge statlion (station 3 for the test location and station 3! -
for the alternate location)

X longitudinel distance from knife edge, In. »
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Xq
Xg

4

z1

81

or

longitudinael distance of station i from knife-edge axls, in.
longitudinal distance of spring from knife-edge axis, in.

vertical distance from the horizontal plane through the knife-edge
axis, in.

vertical displacement of station i relative to horizontal plsne
through knife-edge axis, in.

vertical force at station 1, 1b
epparent moment of inertia, slug-ft2
fuselage moment of inertis, slug-ft2
wing moment of inertia, slug-ft@
longitudinel moment of inertia, slug-ftZ

longitudinal moment of inertia ebout the body reference axis passing
through the airplane center of gravity, slug-ft2

perpendicular distance from plane passing through wing chord at
wing-fuselage Jjuncture, in.

displecement of station 1 relative to & plane passing through
wing chord at wing-fuselage Jjuncture, in.

displacement of knife edges from plane passing through wing chord
at wing-fuselage juncture, in.

angle of rotation of fuselage center line, radians
frequency, radians/sec

undemped neatural frequency of flexible airplane in test rig,
radians/sec

wing first-bending mode frequency, radians/sec

undamped nstural frequency of rigid airplane in test rig,
radians/sec

Matrices

column mstrix

square matrix
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Ll row matrix
[°] square matrix with all except diagonal elements equal to zero
[ ]' transposed matrix

[1] unit matrix, metrix which has units for all of its principal dilag-
onal elements and zeros for the remsinder of its elements

{}}- column matrix with all elements equal to 1 _
b1 row matrix with all elements equal to 1
ANALYSIS OF PROBLEM

The baslc problem was to devise a method {0 messure moment of inertia
of a Tlexible girplene. The moment of inertla of rigid airplasnes is 4
usually obtained by measuring the frequency of the alrplane when osclllated
on a pair of knife edges and restralned by a spring. When this method is
epplied to & flexlible airplane, the structural modes can couple with the ¥
supporting spring reactlon forces so that simple calculations of moment of
inertie from the measured frequency are no longer velid. Corrections for
the effect of structural modes on the measured frequency requires knowl-
edge of the structural deflections (modes) and spring constants, or spring
constents and mass distribution of flexible parts; usually these are not
known accurately. A more practlcal aspproach is to seek methods in which
flexibility effects on the measured frequency are smell. Approximate
equations for the airplane dynamic system supported by knife edges and &
gpring will be developed first, and then the application of these equa-
tions to the test gairplane will be made to determine practical methods
for measuring the moment of inertia.

Airplane~Support Dynamic Equetions

The airplene and support system may be approximastely represented by
a8 system of discrete masses elastically connected as shown in figure 1.
The selection of the distribution and number of masses is discussed in
reference 3. In general, mass polnts are selected for 8ll relatively
rigid masses on the alrplane such as the fuselage and nacelles. Then the
digtributed masss of the flexible parts is divided intc segments, which
should be lncreased in number as more accuracy ls desired. The accuracy
of a particular discrete messs arrangement can be checked by comparing the
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deflections of the elastic system under inertial loadings of the discrete
masses and of the continuocus mass for the mode of interest.

If the angle 6 1is assumed smgll in the coordinate system of fig-
ure 1, then only the vertical displacements, zi, of the mass points need
to be considered in the equations of motion. The spring characteristics
can be conveniently expressed in the form of influence coefficients, aij,
which represent the deflection at station i due to a unit loed at
station J. The influence coefflcients can either be calculated or
measured directly on the airplane-support system.

The deflection at the mass polnts in terms of the gpplied forces is
given by:

1

= a11F1 + 812F2 + 813Fs « . « + gF )
Z3, 1000 ( 11F1 2 1IN*N
Zs = (e21F1 + a8z5Fo + & . ..+ F
2 = 7000 (221F1 22F2 23F3 a-NFN) f (18)

1

zZy = —— l(ag.F4 + & + a « « « + a8
N = 755 (emiF1 + enaF2 + eNsFs NNFYy) J

These equetions can be more conveniently written 1n mstrix form as

follows:
i =L ai. Fi ; i,J=l,2’ . e -,N (lb)
z 1000 | ?1d

Metrix notation will be used throughout the remainder of the report.
These equations can easily be converted to tabular form by applying the
rules of matrix multiplication, addition, and transposition which sre
explained in Chapter 1 of reference k.

Of tentimes, the influence coefficients of the airplane wing sre known
relative to the fuselage (8 coordinastes in fig. 1). If these are
expressed in matrix form [bjj] where the element bjj is the deflection
at station 1, reletive to fuselage, due to & load at station j, then
the influence coefficients [aij] for equation (1b) may be obtained by the
following transformstion

l:aij] = [e] [bij][c]' + %{ﬁ—g} t%‘l 1,d=1,2, . . 4N (2)
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where

Colum 12 . . . r . .

—
00 ..

T

o)
'

S
OJZ

X2
[e] = [1] + 00 . .. = - %) e« + +» O

00 ...(X_ ) ...0

S

and r represents the station where the knife edges are located. This
equation is derived in Appendix A.

For sinusocidal motion, the inertial force applied to the structure
is Fy =f-—2-uhzzimi. Then

e ) om0

The modes and natural frequencies of this dynamic system may be
determined by solving equation (3) by methods described in reference L.
Since the fundsmental mode is the only one used to determine the moment
of inertis, the simple iteration solution of equation (3) is most prac~
tical. Assume a modal column,?® zi%, substitute into the right-hend side
of equation (3), and perform the indicated matrix multiplications. The
resulting model column is normelized and agein substituted into the right-
hand side of equation (3). This process is repeated until successive
normslized modal columns are equal. The inverse of the normalilzing multi-
plier is the frequency squared.

The rigid sirplane can be treated as a special case of equation (3)

in which the [bij] part of [aij] is equal to the zero matrix. Then
by equations (2) snd (3)

et BREEE @

27 modsl column is a set of coordinates which describes the charasc-
teristic shape in which the system oscillates.
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and, since {%i}-is invariant for the rigid case, equation (ha) reduces
1o the well-known equation for a rigid alrplane:

12000 kxg2
Cl.)oz = X =] (l{_‘b)

Z mixi=2

i=2

from which the moment of inertia is obtained:

. mix42 1000 kxg>
I =§z = he)
J 1hk 12 wy2 (

I=1
Minimization of Flexibility Effects

The practical frequencies for ground oscillation tests to determine
moment of inertis naturally fall below the frequencies of the structural
modes. Also, frequencies near zerc are not practical because of the
large statlic spring deflections required and the relatively larger effect
of friction and damping forces. Hence, the highest frequency at which
flexibility effects are small is probably the most desirable. Seversl
approaches are available. One is to select locations of knife edges and
springs which suppress or uncouple the lowest airplane structural mode,
thus raising the availeble band of frequencies in which flexibility
effects are small. Another approach is to limit the frequency to values
which keep flexibillty effects small. Discussion of these approaches
follows.

Uncoupling of the wing first-bending mode.- When the airplsne is
oscillated at frequencies below the structural-mode frequencies, the
inertisl forces in the wing excite the wing filrst-bending mode primerily.
The degree of excitation will, of course, depend on the location of the
rotational axis and the frequency. Although it is possible to solve for
an sxis which gives the minimum excitation to the wing, the choice of the
axis is usually restricted to some point near the center of gravity if
static spring deflections are to be kept within practicael limits. Since
the axis of rotation is more or less fixed, an external force is needed
to suppress the wing first-bending mode. Such a force is availsble in
the reaction force at the knife edges if they are loested out on the wing.
The problem then resolves itself into one of selecting a spring location
which gives the reaction force the amplitude and phase necessary to cancel
out the major part of the wing first-bending mode. Since the principal
masses are located in the fuselage, a good criterion to optimize the spring
location is to minimize the deflection of the fuselsge relative to the
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knife edges (Br). This imposes boundsry conditions similar to those of

a rlgid strut from the wing to the fuselsge. The minimum value of Jp -
can be determined by solving for {%i}-over e range of xg, calculating
Br from <zipr and plotting versus xg.

Cases where uncoupling is not prectical.- In some cases 1t will not
be practical to locate Knife edges sufficiently far out on the wing to
uncouple the wing firsi-bending mode. In such cases flexibility effects
can be kept smsll only by keeping the frequency small. A simplified
analysils (Appendix B) of & swept-wing configuration in which the knife
edges are located near the wing root shows that the epparent inertia is:

Ty
I, = Ip + ————— (5)
1l- (‘*’o/‘*’nl)z

The moment of inertia of the wing, Iy, is usually about 15 percent of
the total moment of Inertie when nacelles are loceted near the wing tips.
Then, according to equation (5), errors in moment of inertia greater
than 5 percent will be caused by flexibility if wgy is greater then

50 percent of Wn, - #o

Analysls of Test Airplane

The dynamic-analysis techniques just described were applied to a
test alrplane which was represented by discrete masses as shown in
figure 2. The airplane dimensions are given in table I and estimated
masses and influence coefficlents are given in table II obtained from
references 1 and 5. Comblnations of spring and knife-edge locatlions as
shown on flgure 3 were considered. The most practicel combinations are
those of figures 3(a) and 3(b) because the knife edges are near the
center of gravity which gives small static spring deflectlons and the”
compression springs reduce the load at the knife edges. The combination .
of figure 3(c) was considered because it is an errangement which is
sometimes used on rigid airplanes and provides an interesting comparison
with the arrangement of figure 3(a) since the reaction forces of the two
springs are 180° out of phase. - o

Through use of equations (3) and (4b) the frequencies for the flex-
ible and rigid airplane were calculated for the combinations of figure 3.
The results are shown for & range of spring constents on filgure b, The
frequency of the flexible airplene using the combination of figure 3(&)
1s nearly the same as the freqpency of the rigid alrplene but the com-
binations of figures 3(b} and 3(c) show large shifts in frequency due %o
flexibllity for cdémstant k. Hence, the arrangement shown on figure 3(&)
is the most desirable of the three from the standpoint of reducing flexi- >

bility effects. L
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The reason for the large shifts in frequency 1s indicated by the
corresponding modes, {}i}y plotted in figure 5. This figure shows the

relative movement of the fuselage and wing when they oscillate in the
fundsmental mode. The modes have been normalized to the same angle of
rotation so that the relative amounts of wing deflection are apparent.

It may be seen that system (a) oscillates very nearly as a rigid airplane
in contrast to systems (b) and (c) which have relatively large wing
deflections. '

Although the fuselage Jjack points sre the most practical locations
for the spring, it is interesting to estimate the optimum location.
Figure 6 shows the variation of the deflection of fuselage relative to
knife edges, &y, with spring location, xg. The deflection goes to
zero at xg = O and xg = 680 inches which is at the nose of the airplane
and is noted on figure 2. The former value 1s trivial because frequency
is zero at this polnt, but the latter value indicates the approximate
spring location to minimize flexibility effects.

A direct indication of the effects of flexibility on the measured
moment of inertlis is obtained by calculating the s e of the ratio of
the flexible to rigid airplane frequencies, (wn/wo) . This parameter
is inversely proportional to the ratio of the flexible airplane apparent
moment of inertis end the rigid airplene moment of inertia. Varlation
of this parameter for the two knife-edge locatlons and a range of spring
locations is shown In figure 7. The difference of the values from 1.00
indicates the error in moment of inertia which would result if flexibility
were not teken into account. With knife edges at the inboard wing Jack
points, the opbtimum location of the spring is at xg = 0, but this loca-
tion 1s imprectical because the frequency is zero. As xg 1s increased
or decreesed, the inertis parameter falls off rapidly. On the other hand,
the inertis parsmeter for the system with knife edges &t outboard wing
Jacks shows an initial increase in accuracy with xg and does not fall
off until considerably higher velues of xg are reached. It is inter-
esting to note that the optimum value for the outboard wing-jack system
is near the point for Oy = 0 which supports the use of this criterion
to estimate the optimum.

The degree of coupling of the rigid sirplane mode and the wing first-
bending mode is Indicated by the variation of the inertia parameter,
(qn/wo)z, as the frequency of the rigid airplane approaches the wing
first-bending mode frequency of T.3 radisns per second. The two frequen-
cles become equal for the spring location of xg = 830 and & spring con-
stant of 1.132. As indicated on figure 7, the outbosrd wing-jack systenm
incurs an error of only 3 percent in the inertia parasmeter, indicating a
smgll smount of coupling ss compsred to 19 percent for the inboard wing-
Jjack system, indicating a large amount of coupling.
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MEASUREMENT OF MOMENT OF INERTIA

Test Equipment

The knife-edge and spring combinstion of figure 3(a) was selected
for use on the test airplane because it satisfied the practical considera-
tions of small static spring deflections and simplicity of attachments to
Jjack points and at the same time would only cause an estimated 2.4-percent
change in the Ilnertis due to flexibility. EKnife-edge and spring instal-
lation details are shown on figures 8 and 9. The spring was calibrated
by applying a load with a hydraulic press and loads were measured with a
strain-gage losd lnstrument. The spring was preloasded to 10,000 pounds
prior to the test to simplify setting up the static spring deflection
(10 in.) for the test configuration. The airplane was equipped with en
optigraph, developed by the WACA, which records the motion of 100-watt
target lights on the wing and fuselage. For this test, target lights were
also mounted on a stand near the teil to give a horizon reference. The
location of target lights used in this report i1s indicated in figures 2
end 3(a). A control position recorder was also installed to indicate
spring deflections.

Experimental Procedure and Measurements

The airplane was welghed in the defueled condition on the outhoard
wing Jjacks and the fromt fuselage Jjack point. The airplane was weighed
at the points of support of the spring and knife edges in order to check
the loads on the test equipment and airplane structure. Gross weight
was 81,390 pounds with center of gravity located at 13.6-percent meen
aerodynamic chord. In this condition it was estimated that the statie
spring deflection would be too large so 500 pounds ballast was added to
the tail. Then the total static load on the spring was 11,520 pounds.

The sirplane was raised with the outboard wing Jacks, with knife
edges instelled, untlil the rear wheels cleared the floor by 3 inches.
Then the nose was raised by the inboard wing Jjacks until the spring
shaft could be moved into place under the forward fuselsge Jjack point.
The inboard wing Jacks were then lowered and removed so that the airplene
rested only on the knife edges and the spring. The wheels were left down
for safety.

Oscillations were excited by hand and the subsequent free oscilla-
tions of wing and body were measured by the optigraph. Unfortunately,
the control position recorder malfunctioned, but it was felt that the
optigraph records were sufficlent. Typical time histories of the opti-
greph measurements are shown on figure 10. It is apperent from the wing-
tip records that modes other than the fundemental were excited. Also, it
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should be noted thet the deflections at the wing tip were extremely small
and on the fringe of measuring accuracy of the optigraph as indicated by
the small deflection of the traces (0.005-in. trace deflection on the
photographic film). A discussion of these higher modes follows.

Effect of subdominent structural modes.- Several analyses were made
to determine the distortion of the time histories from the fundamental
mode caused by the higher-frequency modes. A dynamic analysis of the
subdominent modes (ref. 4) was carried out and the results are shown on
figure 11. In this figure the modal columns of the first three subdomi-
nant modes are plotted. In every case the deflection of the wing tip is
greater than the deflection at the tail. Hence, since the wing-tip
deflections were barely measurable, the distortion of the horizon target
trace (fig. 10) by these higher modes is negligible. This result was
verified by the horizon-target time histories. Components of the calcu-~
lated modes were found to be present but they were too small to affect
the measured frequency of the fundamental, especlally since an average
was teken over a large number of cycles.

Reduction of Data

The average period of the horizon-target deflection oscillation was
determined from 24 cycles and estimated accuracy is 3 percent. Measure-
ments end corrections are as follows:

Period = 1.70 £0.05 sec

Wy = 3.70 +0.13 radians/sec
k = 1.132 1000 1b/in.
Xg = 391.k in.

From equation (lke), the measured moment of inertis is obtained
Iy = 1,056,000 slug-£tZ

Correction for flexibility.- The test frequency of 3.7 radians per
second very nearly corresponds to the frequency shown in figure 4 (curve
lsbeled 3(a) for k = 1.132 and xg = 391.%4). For these conditions the
inertial parameter determined from figure 7 is 97.6; hence, the correction
for flexibility is 2.4 percent or -25,000 slug-feet squared.

Correction for additionel appsrent mass.- Additional apparent mass

was calculated by the method of reference 6 and the correction was found
to, be -20,800 slug-feet squared.
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Correctlon to center of grevity.- The correction for transfer of
moment of inertis from knife edge to center of gravity is -65,500 slug-
feet squared.

Correction for ballast and plliots.- The,corréction to subtract the
moment of inertie of the 500-pound ballest snd to add pilots (hOO pounds)
to the airplane gave -26,900 and 415,200 slug-feet gquared, respectively.

Friction and damping.- The effect of frictlon end damping on the
measured frequency was estimated and found to be negligible.

Wheels.- Although the wheels were down during the tests, calculatiéns
indiceated. that the difference between moment of inertie with wheels up and
wheels down was negligible.

Summery of correctlons and moment of inertia.- The measured moment
of inertila and corrections are summarized below. From these values the
longitudinal moment of lnertia about the reference axls 1s obtained for
the airplane ready to fly except for fuel (81,790 pounds, center of
gravity = 12.4-percent mean serodynamic chord).

slug-ft=%
Measured Iy 1,056,000

Flexibility -25,000
Additional

apparent mass -20,800
C.G. transfer -65,500
Ballast -26,900
Pilots +15,200
Tyver 933,000

It is interesting to note that the coxrection for flexibility is
only 2.4 percent as compared to the total correction of 1k.5 percent of
measured Iy.

CONCLUSIONS

Anslyticsl and experimental evaluation of ground oscillation tests
to measure the longitudinal moment of inertia of a large flexible airplane
has led to the conclusion that practicable and asccurate messurements of _
the longitudinal moment of inertla of large flexible airplanes cen be made
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by oscillating the esirplane on s set of knife edges and a spring, which
are arranged so as to minimize excitation of structursl modes. The
effects of flexibility on the fundsmental frequency can be minimized by
reducing the coupling between the spring system mode and the airplene
first-bending mode. This can be done by locating the knife edges out-
board on the wing and selecting a spring location such that the reaction
forces tend to cancel out the wing first-bending mode. For cases where
it is not practicel to locate the knife edges outboard on the wing,
analyses indicate that the fundamental frequency should be smsll relative
to the lowest structural mode frequency (less than 50 percent) to avoid
excessive errors in messured moment of inertis.

Ames Aeronauticel Iaboratory
National Advisory Comittee for Aeronautics
Moffett Field, Calif., Oct. 21, 1955
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APPENDIX A
DERIVATION OF ATRPLANE~SUPPORT INFLUENCE COEFFICIENTS

The coordinate system used in this analysis is shown in figure 1.
Assume that the alrplene influence coefficients are known for the mass
stations and the knife-edge lcocation; that is, [bij] is known in the

BB £

where 1 = 1l,...r,...,Nandr represents the station of the knife edges.

The sum of moments about the reaction point, r, muist be equal to
zero. Hence:

‘_xi_l {Fi} + %gk(8y - 6xg) = 0O (a2)

The sum of the vertical forces must be equal to zero. Hence:

(1] {Fl} + k(8p - 0xg) +R =0 (A3)

where R is the reaction force at the knife edge.

Combining equetions (A3) and (A2) gives:

R = r}:—% - lJ {Fi} | (Ak)

Including the reaction force in equation (A4) with the applied
forces in equation (Al) gives:

e[ B8
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where the 1 in the column mstrix,

o
{J‘_}, appears in the rth row and
all other elements are zero. o

For small angles, the deflections 2zi can be cbtalned by:

bh-f- £

By solving for 6 in equation (A2) and using equations (A5) and (A6),

and noting that ®r = lo o « - 1 0] {Si} where the 1 occurs in the =»th
colum, it may be shown that:

fe} = te1[mag] ter” + £ {2} 2] | fed (am)

where

[el = [1]+

Kt .
in which the (ﬁ - l) terms appear in the rth column.

The influence coefficlent matrix of the airplane supported on knife
edges and springs is:

[aij] = lel [bij] [e]’ +-ll; };—i} [:—%J, 1,j=1,2,. . ., N (48)
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APPENDIX B
APPARENT INERTIA OF A MASS-SPRING SYSTEM

Congsider & mass coonected to a pivot point by a spring as shown in
sketch (a) If & sinusoidel forcing moment, M, of frequency w 1I1s
applied to the system, what is the apparent inertia?

+M

TN

+6

Sketch (a) \\\E\\

The equations of motion neglecting gravity are:

mx26 + mxd = M (BL)
mx6 + md + k.8 = 0 (B2)
where
da®e . 425
= — and 6:——
at2 at2

Solving for the steady-state solution of ] gives:

mx2<:
1 - E—w2

(B3)
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and since the natursl freguency is given by wn£2==kl/m aend the true
moment of inertia by I = mx2; then

IA=-;ZTI=I (B4)

1
1 - 8\2
(&)
When a fuselsge-wing combination is oscillated at frequencies below
the first-bending mode frequency, the wing-bending curve is very similar
to that of the first-bending mode. Hence, this simple two-degree-of-
freedom analysis is spproximately correct for a complete wing for fre-

quencies below the wing first-bending mode. The apparent inertias of a
rigid fuselage with a flexible wing attached is epproximately given by

Iy
IA=IF+—————2- (B5)
1 - Yo
“n,
where
I, apparent moment of 1nertia
Ip fuselage moment of inertisa
I;; wing moment of inertia

Wn wing first-bending mode frequency
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TABLE I.- ATRPTANE DIMENSIONAL

Fuselage
Length, £t . « ¢« o v ¢« ¢ ¢ ¢« ¢ o o
Average width, £t . . . . . . . « . .
Average depth, £t . . « ¢« « « ¢« « . .

Wing :

Span, £ ¢ ¢« ¢ &+ ¢« ¢ ¢ ¢ e ¢« « .
Area, sq f5 . . . . 4 . 4 o 0 e .
Aspect ratio . . . . ¢ . . .. . .
Taper ratio . . ¢« ¢« ¢ v v v & o & .
Sweep angle (25-percent M.A.C.), deg .
Dihedral angle, deg « « + « =« « o« o @

Horizontal tail
Area, sq ft . « ¢« ¢ ¢ ¢ ¢ 4 W . . .
Aspect ratio . . .« . . 4 . 0. . .

19

CHARACTERISTICS
. . 10k.4
. . . . 6.95
. . . 7.97
. e e e . 116
. . . . 1hko8
. . . 9.43
. .. . 0.k
. .. . 35
. o . . . 0
e e e e e . . 268
e e e e e e e . h.06
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TARTE II.- ATRPLANE MASS AND SPRING CHARACTERISTICS
(a) Mass distribution

Station
1 2 3 3! b 2 6 T 8
my 483.6 |259.6 |0 0 121.8 |205.8 39.8 |[716.4| T16.M
Pei%ﬁgt .383 .383( .koo| .197 7071 795 .92 O 0
semispan
oo opora| -39 | 38| .81 .58| .38 Ak | .38 - -]~ - -
Knife edges at outboard wing jack points
X4 169.3 k3.7 Jo - - -j4109.5 [-123.3 [|-211.5 |384.9|-247.1
nife edges at inboard wing Jack points
xq ok |-76.2 |- - =0 229.h [-2k3.2 L331.4 [265.0({-367.
(b) Wing influence coefficients
by 4
T~ 1 2 3 3! 4 5 6 |78
1 0.0637 | 0.0175 | 0.021% |0.0055 {0.0486 | 0.0722 [ 0.0629 {0 | O
2 020k | .0360 | .0408 | .0075 | .0993 | .1130 | .139% |00
3 L0217 | JOMk2 | 0540 |- - - | 1258 | .1k03 | A784 |00
3! 0019 .0082 |- - -] .0032 | 0164 | .0162) .0225|01}0
L 0622 | .0993 | .1209 | .o164 | 4103 | 4820 | .6530|01!0
5 076k | 1105 | .1330 | .0180 | 4770 | 5948 | .8217(0 0
6 .0803 | .1288 | .1603 | .o22% | .62l | .8218 |1.2231|010
T 0 0 0 0 0 0 0 0]o
8 0 0 0 o 0 0 0 ofo
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»

Fuselage reference
Jito
X — 0

Knife edge

Wing reference
line

A

Discrete
masses

l‘ 777777
Xs Positive values indicated
by arrows

Figure 1.- Coordinate system (side view of airplane and support).

o oY Designation of discrete
389% wing chord T3 4 masses
(4) (Locations listed in table II)
Alternate method — knife —,
edges at inboard wing Test method - knife edges
jack points. Station 3', m &Sl at outboard wing jack
v points, Station 3.
Optigraph ’ |/
1
orizon
optigraph
lights

ee———— X = 680 ———— \
Axis of romﬁon—/ = \ Wing-tip optigraph light

O

Figure 2.- Plan view of test airplane and discrete masses.
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Horizon optigraph
target lights
Wing-tip optlgraph

Optigraph
light
~ |+55
i
/ \ i
777 7777

}_._391_4--_,

(a) Knife edges at outboard wing jack points and compression spring at
forward fuselage Jjack point.

{ — 64.0“/.f

VAR

rrr7 ‘ 622.8“ ‘ Frry

(b) Knife edges at inboard wing jack polnts and compression spring at
aft fuselage Jjeck point.

_< iy |“559

7777 ‘-—39l4"—’| ///

(c) Knife edges at outboard wing jack points and tension spring aft of
pivot.

Figure 3.~ Test airplane supported on knife edges and springs at various
locations.
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2.0
- Rigid |
- —— — — Flexible Figure
i 3(a) and 3(c)/|
1.6 +
- Figure 3(a) /
i /
] /
) /
[ =4
;\LZ /
= k r/
o i /
g | &
S 8 Figure 3(b)
-
4
Y —— ' ' '

w, radians/sec

Figure k.- Effect of wing bending flexibility on the measured frequency
for the various suspension systems in figure 3. (Wing first-bending
mode frequency = 7.3 radiens/sec.)
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—
-
”
T
gﬁﬁ’q;' 280
y

38% wing chord

— - - -
- Fuselage reference line
P 1 ] I 1
600 400 200 0 -200 =400 -600

x, in.

(a.) Knife edges at outboard wing Jjacks; spring forward.

-
—
-
- ---7%
”’
280

| 1 { !
400 200 0 -200 -400
X, in.

-600

(b) Knife edges at inboard wing jacks; spring aft.

—1t | 1 1
600 400 200 0 -200
X, in.

—_
-400 -600

(c) Knife edges at outboard wing jacks; spring aft.

Figure 5.- Fundamental modes for spring-knife-edge srrangements shown
in figure 3 (k = 1.132).
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-04 /
/

-.08 7

-400 -200 0 200 400 600 800
- Xg o iN.

Figure 6.- Deflection of fuselage relative to knife-edge axis for
various spring locatlions and l-inch deflection at station 7.
(Knife edges at outboard wing jacks.) (k = 1.132)
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Knife edges at outboard wing jack points
—~ — — —= Kpife edges at inboard wing jack poinis

1.0O e —
/, - ~ ~ Sr = O
I' ] \\
, )
/ / N
92 / yd
: I / \

\
76 1
l
i i
|
|
.68
- Xg = 830
(wy= 7.3)
.60 L .
-800 =400 o) 400 800 1200
Xg o iN.

Figure 7.~ Effect of spring location on inertia parsmeter (k = 1.132).
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e

3
2
)
3

4-30241
(a) Knife-edge installation.

2%ylﬁo.hom

Compression
spring

1" op. 1§ rod |
-led -
k=1132 8 {3
= - (277777774 127777777723
A-20240 ?_.[ ]
2 Dia.
12" ]

(b) Spring installstion.

Figure 8.- Knife-edge and spring details.
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Figure 10.~ Time historlies of horizon target deflectlon and wing-tip
deflection.
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Z
Tail
deflection
Wing tip
deflection
1 § | | | ]
600 400 200 (0] -200 -400 -600
X, in,
First subdominant mode (w,= 8.62 radians/sec).
y 4
38% wing chord
(&) Fuselage
5 reference line
__(B)
R a— A
\‘Spm Knife edge
| | i 1 ] §j
600 400 200 0 -200 -400 -600
X, in.
Second subdominant mode (w,=16.18 radians/sec).
- o 1 I I i
600 400 200 C ~-200 -400 -600

X, in.
Third subdominant mode (w,= 23.66 radians/sec).

Figure 11.- Calculated subdominant modes for test configuration.
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